
YAML Schema Standard
Release 0.1.0.dev0

Michael Droettboom, Erik Bray, et al
Space Telescope Science Institute

August 20, 2015

CONTENTS

1 Changes 3
1.1 Version 0.1.0 . 3

2 Introduction 5

3 History 7

4 New Keywords 9
4.1 tag keyword . 9
4.2 propertyOrder keyword . 10
4.3 style keyword . 10
4.4 flowStyle keyword . 10
4.5 examples keyword . 11

5 Additional Notes 13
5.1 Anchors/Aliases and References . 13

6 Schemas 15
6.1 draft-01: YAML Schema . 15
6.2 invoice: Invoice . 18

i

ii

YAML Schema Standard, Release 0.1.0.dev0

This document describes the YAML Schema format, an extension to JSON Schema designed specifically for
validating and documenting data products serialized as YAML.

This document is a work in progress and does not represent a released version of the YAML Schema stan-
dard.

CONTENTS 1

YAML Schema Standard, Release 0.1.0.dev0

2 CONTENTS

CHAPTER 1

CHANGES

1.1 Version 0.1.0

First pre-release.

3

YAML Schema Standard, Release 0.1.0.dev0

4 Chapter 1. Changes

CHAPTER 2

INTRODUCTION

YAML Schema (page 15) is a small extension to JSON Schema Draft 4 (http://json-schema.org/latest/json-
schema-validation.html) so support features unique to YAML data serialization language (as opposed
to plain JSON), as well as enhance documentation of schemas. Understanding JSON Schema
(http://spacetelescope.github.io/understanding-json-schema/) provides a good resource for understanding how
to use JSON Schema, and further resources are available at json-schema.org (http://json-schema.org). A working
understanding of YAML and JSON Schema is assumed for this document, which only describes what makes YAML
Schema different from JSON Schema.

A YAML schema as defined by this document is typically serialized as YAML, though may also be serialized as JSON
(JSON being a subset of YAML), or any other format that can encapsulate the structure of JSON data. In fact,
many JSON Schema validators work by deserializing a JSON document into native data structures of the language
in which it is implemented, and checking that data structure against the schema. So although the schema itself is
defined in JSON, JSON Schema is not strictly limited to data that has been at one time serialized as JSON. It is,
however, limited to data structures that can be serialized as JSON.

Given some data structure, it will generally be possible to serialize it either as JSON or as YAML. However,
YAML serializations may contain additional explicit structure that is not possible in JSON without use of local,
application-specific conventions. Examples include tags, and ordered objects, both of which are described in more
detail below. As YAML is designed with human-readability in mind, presentation is also of more concern, and the
YAML specification has more to say on the topic than JSON. YAML often provides multiple options for how the
same data can be presented (beyond just placement of whitespace), and a schema can be used to provide hints to
YAML writers for how a given data structure should be serialized for optimal readability.

To be clear, the JSON Schema specification allows extensions by design 1, through definition of additional keywords
that may be used in a schema. JSON Schema implementations that do not support the additional keywords
should ignore them; as such, to support YAML Schema it is necessary to provide JSON Schema implementations
that interpret the added keywords. Also, just as JSON Schema provides a metaschema 2, YAML Schema has a
metaschema describing how to correctly interpret its additional keywords. The YAML Schema metaschema extends
JSON Schema’s metaschema using the JSON Schema extension capability, and as such is a superset of JSON
Schema’s metaschema.

1 Extending the JSON Schema core definition (http://json-schema.org/latest/json-schema-core.html#anchor20)
2 JSON Schema Meta Core Meta-Schema (https://github.com/Julian/jsonschema/blob/4baff2178f4ade789cb6049f2b6bcd9031c8f89f/jsonschema/schemas/draft4.json)

(on GitHub for ease of viewing)

5

http://json-schema.org/latest/json-schema-validation.html
http://spacetelescope.github.io/understanding-json-schema/
http://json-schema.org
http://json-schema.org/latest/json-schema-core.html#anchor20
https://github.com/Julian/jsonschema/blob/4baff2178f4ade789cb6049f2b6bcd9031c8f89f/jsonschema/schemas/draft4.json

YAML Schema Standard, Release 0.1.0.dev0

6 Chapter 2. Introduction

CHAPTER 3

HISTORY

YAML Schema was originally developed in parallel with the specification and implementation of the ASDF file
format (http://asdf-standard.readthedocs.org/en/latest/index.html), a new file format being developed at STScI
(http://www.stsci.edu/portal/) for serializing astronomy and other scientific data.

It was an early requirement to include a validation mechanism for the core data structures appearing in ASDF
files, and a strong desire to build this mechanism on existing, broadly adopted standards. JSON Schema quickly
emerged as the best choice. However, ASDF serializes its core data structures as YAML (a superset of JSON, as
of v1.2 of the YAML standard), and makes extensive use of YAML-specific features (chiefly tags). So it became
desireable to extend JSON Schema to support validation of some YAML-specific featuers.

Additionally, though not particular to YAML, there was a desire to include more documentation for schemas
within the schemas themselves. Although YAML (but notably not JSON) has support for in-line comments, those
comments are ignored by parsers and are not returned as part of the data structure read out of a YAML file. It
was advantageous to have documentation as part of the data structure for schemas themselves, as it allows better
introspection of schemas either as part of a user API, or for generation of human-readable documentation. To that
end YAML Schema adds additional documentation-related properties to the schema format. However, as these
properties are not YAML-specific they could, in principle, be added as a separate JSON Schema extension.

Although YAML Schema was created specifically for ASDF, we expect it to have broader applicability, and hope that
offering it as a separate product will encourage adoption of this format within the YAML community, and drive
development of implementations.

7

http://asdf-standard.readthedocs.org/en/latest/index.html
http://asdf-standard.readthedocs.org/en/latest/index.html
http://www.stsci.edu/portal/

YAML Schema Standard, Release 0.1.0.dev0

8 Chapter 3. History

CHAPTER 4

NEW KEYWORDS

YAML Schema adds five new keywords to JSON Schema:

• tag keyword (page 9)
• propertyOrder keyword (page 10)
• style keyword (page 10)
• flowStyle keyword (page 10)
• examples keyword (page 11)

4.1 tag keyword

tag, which may be attached to any data type, declares that the element must have the given YAML tag.

For example, the invoice schema declares its tag to be:

tag: "tag:stsci.edu:yaml-schema/examples/invoice"

This implies that an object in a YAML document is only matched to this schema if it explicitly marked with the
!invoice tag. Conversely, if a YAML document references this schema, and objects that have the !invoice tag
must satisify the schema associated with it. Therefore, there is a one-to-one mapping between YAML tags and
schemas which specify that tag in the tag keyword.

A schema may require an individual object property or array item to have a specific tag by referencing the schema
associated with that tag, rather than the tag directly. For example a schema that includes an invoice might look
like:

%YAML 1.1

$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/yaml-schema/examples/customer"
tag: "tag:stsci.edu:yaml-schema/examples/customer"
title: Customer
properties:

order-history:
type: array
items:

$ref: "invoice"

In this example the reference to "invoice" as the order-history item type does not directly refer to the invoice
tag, but to the invoice schema. There is no requirement for a schema referenced in this way to have an associated
tag. But because the "invoice" schema does use the tag: keyword this has the net effect of requiring all
order-history items to be tagged !<tag:stsci.edu:yaml-schema/examples/invoice> in the YAML document.

9

YAML Schema Standard, Release 0.1.0.dev0

4.2 propertyOrder keyword

propertyOrder, which applies only to objects, declares that the object must have its properties presented in the
given order.

TBD: It is not yet clear whether this keyword is necessary or desirable.

YAML provides an !!omap type 1 for ordered mappings. In JSON terms, this equates to semantically meaningful
order to the properties in the object, which is not normally possible in JSON without a local convention. As native
language support for ordered mappings is not implemented in all YAML parsers, applications may choose to ignore
this keyword for validation purposes. However, this keyword may also be used as a presentation hint, informing
the YAML writer on the order to write out keywords in a specific mapping object, where possible.

4.3 style keyword

Must be inline, literal or folded.

Specifies the default serialization style to use for a string. YAML supports multiple styles for strings:

Inline style: "First line\nSecond line"

Literal style: |
First line
Second line

Folded style: >
First
line

Second
line

This property gives an optional hint to the tool outputting the YAML which style to use. If not provided, the library
is free to use whatever heuristics it wishes to determine the output style. This property does not enforce any
particular style on YAML being parsed.

4.4 flowStyle keyword

Must be either block or flow.

Specifies the default serialization style to use for an array or object. YAML supports multiple styles for ar-
rays/sequences and objects/maps, called “block style” and “flow style”. For example:

Block style: !!map
Clark : Evans
Ingy : döt Net
Oren : Ben-Kiki

Flow style: !!map { Clark: Evans, Ingy: döt Net, Oren: Ben-Kiki }

This property gives an optional hint to the tool outputting the YAML which style to use. If not provided, the library
is free to use whatever heuristics it wishes to determine the output style. This property does not enforce any
particular style on YAML being parsed.

1 Ordered Mapping (omap) Type for YAML (http://yaml.org/type/omap.html)

10 Chapter 4. New Keywords

http://yaml.org/type/omap.html

YAML Schema Standard, Release 0.1.0.dev0

4.5 examples keyword

The schema may contain a list of examples demonstrating how to use the schema. It is a list where each item is a
pair. The first item in the pair is a prose description of the example, and the second item is YAML content (as a
string) containing the example.

For example:

examples:
-

- Complex number: 1 real, -1 imaginary
- "!complex 1-1j"

This keyword is purely for informational purposes, and while the examples may contain YAML, there is otherwise
nothing YAML-specific about it. This keyword can help in generation of nice documentation for schema, as well as
writing automated tests of the schema in-line with the schema definition itself.

4.5. examples keyword 11

YAML Schema Standard, Release 0.1.0.dev0

12 Chapter 4. New Keywords

CHAPTER 5

ADDITIONAL NOTES

5.1 Anchors/Aliases and References

Another feature of YAML that is not reflected in JSON is anchors and aliases– these allow an object that appears
multiple times in the document to be written out just once along with an anchor. This object can than be referenced
more than once via an alias node.

As this is mostly a presentation detail YAML Schema does not currently have anything to say about it. In principle
YAML Schema could include hints for whether or not an object an object may use anchors or how those anchors
should be named. However in practice we have yet to identify a need for this.

YAML schemas themselves may use anchors and aliases within the schema; however, this usage is discouraged. In
practice we have found the JSON Pointer (http://tools.ietf.org/html/draft-pbryan-zyp-json-pointer-02) 1 syntax
more useful for references within a schema. This is in part because it is already used in JSON Schema 2 via the
JSON Reference (http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03) standard, and because it enables both
intra-schema references and references to external schemas (whereas YAML aliases only allow intra-document
references). The support for external schema references is especially useful for extending and encapsulating
existing schemas from disparate projects.

1 For a softer introduction to how JSON Pointer is used, see the relevant section in Understanding JSON Schema
(http://spacetelescope.github.io/understanding-json-schema/structuring.html#reuse)

2 URL dereferencing in JSON Schema (http://json-schema.org/latest/json-schema-core.html#anchor25)

13

http://tools.ietf.org/html/draft-pbryan-zyp-json-pointer-02
http://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
http://spacetelescope.github.io/understanding-json-schema/structuring.html#reuse
http://json-schema.org/latest/json-schema-core.html#anchor25

YAML Schema Standard, Release 0.1.0.dev0

14 Chapter 5. Additional Notes

CHAPTER 6

SCHEMAS

This reference section includes the YAML Schema meta-schema and any example schemas.

6.1 draft-01: YAML Schema

Type: schema (http://json-schema.org/draft-04/schema) and object.

YAML Schema

A metaschema extending JSON Schema’s metaschema to add support for some YAML-specific constructions.

All of:

0

Type: schema (http://json-schema.org/draft-04/schema).

1

Type: object.

Properties:

tag

Type: string (len ≥ 6).

A fully-qualified YAML tag name that should be associated with the object type returned by the YAML
parser; for example, the object must be an instance of the class registered with the parser to create instances
of objects with this tag. Implementation of this validator is optional and depends on details of the YAML
parser.

propertyOrder

Type: array of (string).

Specifies the default order of the properties when writing out. Any keys not listed in propertyOrder will be
in arbitrary order at the end.

Items:

Type: string.

flow_style

Type: string from [”block”, “flow”].

Specifies the default serialization style to use for an array or object. YAML supports multiple styles for
arrays/sequences and objects/maps, called “block style” and “flow style”. For example:

15

http://json-schema.org/draft-04/schema
http://json-schema.org/draft-04/schema

YAML Schema Standard, Release 0.1.0.dev0

Block style: !!map
Clark : Evans
Ingy : döt Net
Oren : Ben-Kiki

Flow style: !!map { Clark: Evans, Ingy: döt Net, Oren: Ben-Kiki }

This property gives a hint to the tool outputting the YAML which style to use. If not provided, the library is
free to use whatever heuristics it wishes to determine the output style. This property does not enforce any
particular style on YAML being parsed.

style

Type: string from [”inline”, “literal”, “folded”].

Specifies the default serialization style to use for a string. YAML supports multiple styles for strings:

Inline style: "First line\nSecond line"

Literal style: |
First line
Second line

Folded style: >
First
line

Second
line

This property gives a hint to the tool outputting the YAML which style to use. If not provided, the library is
free to use whatever heuristics it wishes to determine the output style. This property does not enforce any
particular style on YAML being parsed.

examples

Type: array of (array).

A list of examples to help document the schema. Each pair is a prose description followed by a string
containing YAML content.

Items:

Type: array.

Items:

index[0]

Type: string.

index[1]

Type: string.

6.1.1 Original schema in YAML

1 %YAML 1.1
2 ---
3 $schema: "http://stsci.edu/schemas/yaml-schema/draft-01"

16 Chapter 6. Schemas

YAML Schema Standard, Release 0.1.0.dev0

4 id: "http://stsci.edu/schemas/yaml-schema/draft-01"
5 title:
6 YAML Schema
7 description: |
8 A metaschema extending JSON Schema's metaschema to add support for
9 some YAML-specific constructions.

10 allOf:
11 - $ref: "http://json-schema.org/draft-04/schema"
12 - type: object
13 properties:
14 tag:
15 description: |
16 A fully-qualified YAML tag name that should be associated
17 with the object type returned by the YAML parser; for
18 example, the object must be an instance of the class
19 registered with the parser to create instances of objects
20 with this tag. Implementation of this validator is optional
21 and depends on details of the YAML parser.
22 type: string
23 minLength: 6
24

25 propertyOrder:
26 description: |
27 Specifies the default order of the properties when writing
28 out. Any keys not listed in propertyOrder will be in
29 arbitrary order at the end.
30 type: array
31 items:
32 type: string
33

34 flow_style:
35 description: |
36 Specifies the default serialization style to use for an
37 array or object. YAML supports multiple styles for
38 arrays/sequences and objects/maps, called "block style" and
39 "flow style". For example::
40

41 Block style: !!map
42 Clark : Evans
43 Ingy : döt Net
44 Oren : Ben-Kiki
45

46 Flow style: !!map { Clark: Evans, Ingy: döt Net, Oren: Ben-Kiki }
47

48 This property gives a hint to the tool outputting the YAML
49 which style to use. If not provided, the library is free to
50 use whatever heuristics it wishes to determine the output
51 style. This property does not enforce any particular style
52 on YAML being parsed.
53 type: string
54 enum: [block, flow]
55

56 style:
57 description: |
58 Specifies the default serialization style to use for a string.
59 YAML supports multiple styles for strings::
60

61 Inline style: "First line\nSecond line"

6.1. draft-01: YAML Schema 17

YAML Schema Standard, Release 0.1.0.dev0

62

63 Literal style: |
64 First line
65 Second line
66

67 Folded style: >
68 First
69 line
70

71 Second
72 line
73

74 This property gives a hint to the tool outputting the YAML
75 which style to use. If not provided, the library is free to
76 use whatever heuristics it wishes to determine the output
77 style. This property does not enforce any particular style
78 on YAML being parsed.
79 type: string
80 enum: [inline, literal, folded]
81

82 examples:
83 description: |
84 A list of examples to help document the schema. Each pair
85 is a prose description followed by a string containing YAML
86 content.
87 type: array
88 items:
89 type: array
90 items:
91 - type: string
92 - type: string
93 ...

6.2 invoice: Invoice

Type: object.

Invoice

Represents billing invoices.

Definitions:

address

Type: object.

An address consisting of a name and street address.

Properties:

name

Type: string. Required.

The full name of the addressee (in whatever order is culturally appropriate).

address

Type: definitions/street-address (page 19). Required.

18 Chapter 6. Schemas

YAML Schema Standard, Release 0.1.0.dev0

street-address

Type: object.

A street address (excluding the name of the addressee).

Properties:

lines

Type: string. Required.

city

Type: string. Required.

state

Type: string. Required.

postal

Type: string (regex ^[0-9]{5}(-[0-9]{4})?$). Required.

product

Type: object.

A listing for a single product on an invoice (including quantity of that product–products with the same SKU
should not be listed more than once).

Properties:

sku

Type: string. Required.

quantity

Type: integer ≥ 1. Required.

description

Type: string. Required.

price

Type: number ≥ 0. Required.

Properties:

invoice

Type: integer ≥ 1.

date

Type: string (format date-time).

bill-to

Type: definitions/address (page 18).

ship-to

Type: definitions/address (page 18).

product

Type: array of (definitions/product (page 19)).

6.2. invoice: Invoice 19

YAML Schema Standard, Release 0.1.0.dev0

Items:

Type: definitions/product (page 19).

tax

Type: number ≥ 0.

total

Type: number ≥ 0.

comments

Type: string.

Examples:

An example invoice demonstrating the full schema::

%TAG ! tag:stsci.edu:yaml-schema/examples/
--- !invoice
invoice: 34843
date : 2001-01-23
bill-to: &id001

- name: Chris Dumars
- address:

- lines: |
458 Walkman Dr.
Suite #292

- city: Royal Oak
- state: MI
- postal: 48046

ship-to: *id001
product:

- sku : BL394D
quantity : 4
description : Basketball
price : 450.00

- sku : BL4438H
quantity : 1
description : Super Hoop
price : 2392.00

tax : 251.42
total: 4443.52
comments:

Late afternoon is best.
Backup contact is Nancy
Billsmer @ 338-4338.

...

6.2.1 Original schema in YAML

1 %YAML 1.1
2 ---
3 $schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
4 id: "http://stsci.edu/schemas/yaml-schema/examples/invoice"
5 tag: "tag:stsci.edu:yaml-schema/examples/invoice"
6 title: Invoice
7 description: |

20 Chapter 6. Schemas

YAML Schema Standard, Release 0.1.0.dev0

8 Represents billing invoices.
9

10 examples:
11 -
12 - "An example invoice demonstrating the full schema:"
13 - |
14 %TAG ! tag:stsci.edu:yaml-schema/examples/
15 --- !invoice
16 invoice: 34843
17 date : 2001-01-23
18 bill-to: &id001
19 - name: Chris Dumars
20 - address:
21 - lines: |
22 458 Walkman Dr.
23 Suite #292
24 - city: Royal Oak
25 - state: MI
26 - postal: 48046
27 ship-to: *id001
28 product:
29 - sku : BL394D
30 quantity : 4
31 description : Basketball
32 price : 450.00
33 - sku : BL4438H
34 quantity : 1
35 description : Super Hoop
36 price : 2392.00
37 tax : 251.42
38 total: 4443.52
39 comments:
40 Late afternoon is best.
41 Backup contact is Nancy
42 Billsmer @ 338-4338.
43 ...
44

45 type: object
46

47 properties:
48 invoice:
49 type: integer
50 minimum: 1
51 date:
52 type: string
53 format: date-time
54 bill-to:
55 $ref: "#/definitions/address"
56 ship-to:
57 $ref: "#/definitions/address"
58 product:
59 type: array
60 items:
61 $ref: "#/definitions/product"
62 tax:
63 type: number
64 minimum: 0
65 total:

6.2. invoice: Invoice 21

YAML Schema Standard, Release 0.1.0.dev0

66 type: number
67 minimum: 0
68 comments:
69 type: string
70 flowStyle: block
71

72 definitions:
73 address:
74 description: |
75 An address consisting of a name and street address.
76 type: object
77 flowStyle: block
78 propertyOrder: [name, address]
79 required: [name, address]
80 properties:
81 name:
82 type: string
83 style: inline
84 description:
85 The full name of the addressee (in whatever order is
86 culturally appropriate).
87 address:
88 $ref: "#/definitions/street-address"
89 additionalProperties: false
90

91 street-address:
92 description: |
93 A street address (excluding the name of the addressee).
94 type: object
95 flowStyle: block
96 propertyOrder: [lines, city, state, postal]
97 required: [lines, city, state, postal]
98 properties:
99 lines:

100 type: string
101 style: literal
102 city:
103 type: string
104 flowStyle: inline
105 state:
106 type: string
107 flowStyle: inline
108 postal:
109 type: string
110 flowStyle: inline
111 pattern: "^[0-9]{5}(-[0-9]{4})?$"
112 additionalProperties: false
113

114 product:
115 description: |
116 A listing for a single product on an invoice (including quantity
117 of that product--products with the same SKU should not be listed
118 more than once).
119 type: object
120 flowStyle: block
121 required: [sku, quantity, description, price]
122 properties:
123 sku:

22 Chapter 6. Schemas

YAML Schema Standard, Release 0.1.0.dev0

124 type: string
125 flowStyle: inline
126 quantity:
127 type: integer
128 minimum: 1
129 description:
130 type: string
131 flowStyle: inline
132 price:
133 type: number
134 minimum: 0
135 additionalProperties: false

6.2. invoice: Invoice 23

	Changes
	Version 0.1.0

	Introduction
	History
	New Keywords
	tag keyword
	propertyOrder keyword
	style keyword
	flowStyle keyword
	examples keyword

	Additional Notes
	Anchors/Aliases and References

	Schemas
	draft-01: YAML Schema
	invoice: Invoice

